Quarkonium Production at ep and e^+e^- Colliders

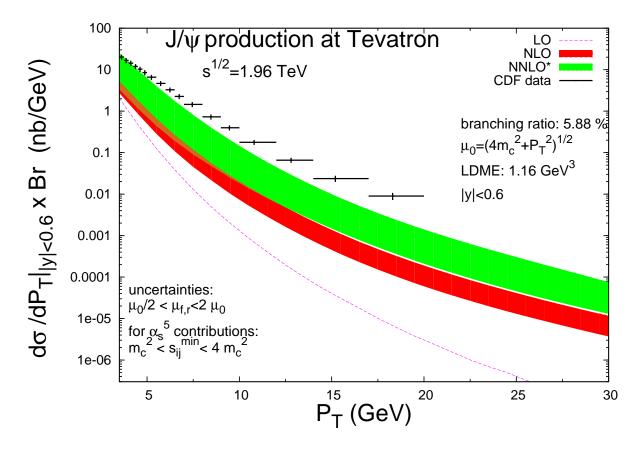
Geoffrey Bodwin Argonne National Lab

- Highlights from Last Week's Episode
- $\gamma\gamma \to J/\psi + X$ at LEP
- Inelastic J/ψ Photoproduction Cross Section at HERA
- Polarization in Inelastic J/ψ Photoproduction at HERA
- J/ψ Production in DIS at HERA
- Factorization in Exclusive Quarkonium Production
- Exclusive Double-Charmonium Production at Belle and BaBar
- Inclusive Double $c\bar{c}$ Production at Belle
- Summary

Highlights from Last Week's Episode

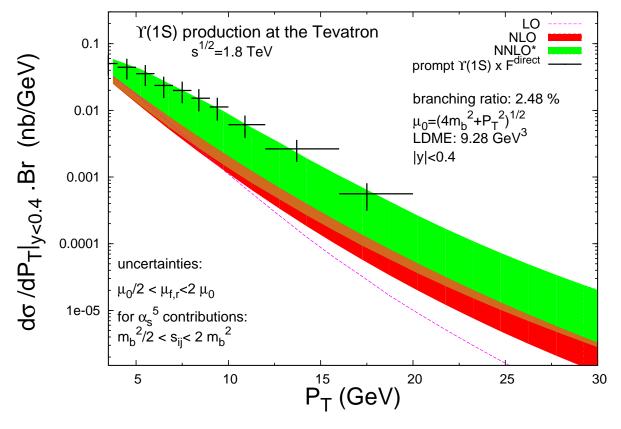
NRQCD Factorization Formula

Conjecture (GTB, Braaten, Lepage (1995)):


The inclusive cross section for producing a quarkonium at large momentum transfer (p_T) can be written as a sum of "short-distance" coefficients times NRQCD matrix elements.

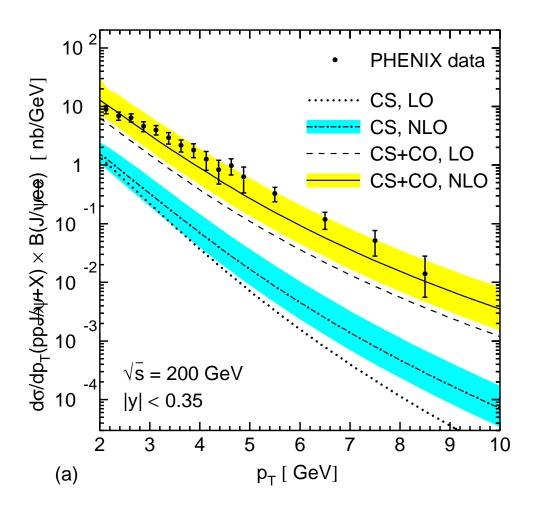
$$\sigma(H) = \sum_{n} F_n(\Lambda) \langle 0 | \mathcal{O}_n^H(\Lambda) | 0 \rangle.$$

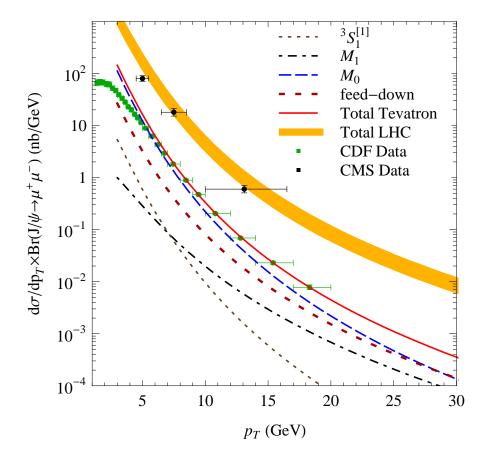
- The "short-distance" coefficients $F_n(\Lambda)$ have an expansion in powers of α_s .
- The operator matrix elements $\langle 0|\mathcal{O}_n^H(\Lambda)|0\rangle$ are universal (process independent).
 - Only the color-singlet production and decay matrix elements are simply related.
- ullet The matrix elements have a known scaling with v.
- The NRQCD factorization formula is a double expansion in powers of α_s and v.
- ullet Quarkonium production can occur through color-octet, as well as color-singlet, Qar Q states.
- If we drop all of the color-octet contributions and retain only the leading color-singlet contribution, then we have the color-singlet model (CSM).
 - Inconsistent for P-wave production: IR divergent.


NLO and NNLO* Contributions to Color-Singlet Production

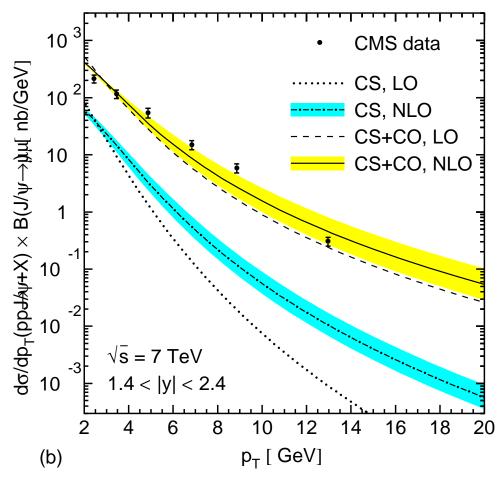
- ullet Large corrections are caused by slower fall-off with p_T as new channels open up.
- The perturbation expansion might be brought under better control by making use of the fragmentation approach of Kang, Qiu, and Sterman (2010).
- Even if one includes NNLO* corrections to the color-singlet contribution, there is still room for a large color-octet contribution.

- Plot from Pierre Artoisenet, based on work by Artoisenet, Campbell, Lansberg, Maltoni, Tramontano.
- The NNLO* calculation is an estimate based on real-emission contributions only.


 \bullet The NNLO* color-singlet contribution to Υ production could explain the data by itself, but it does not rule out a large, or even dominant, color-octet contribution.

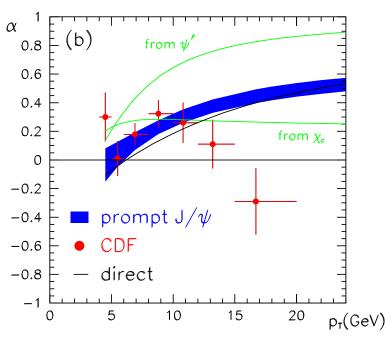

- Plot from Pierre Artoisenet, based on work by Artoisenet, Campbell, Lansberg, Maltoni, Tramontano (2008)
- NLO results confirmed by Gong and Wang (2007).

NLO Contributions to Color-Octet Production

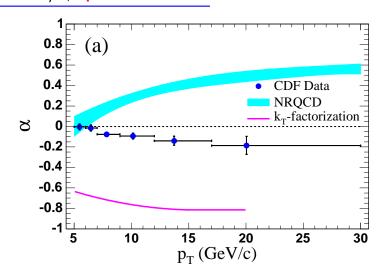

- ullet The first complete NLO calculations of the color-octet contributions through order v^4 have been completed recently.
- Corrections to S-wave production are small.
 Corrections to P-wave production are large.
- Color-octet matrix elements that were obtained from fits to the Tevatron data lead to predictions for J/ψ production at RHIC and the LHC that are in good agreement with the data.

- NLO NRQCD calculation of Kniehl and Butenschön (2010).
- \bullet Feeddown ($\approx 36\%$) is not included in the theoretical prediction.
- The NLO color-singlet contribution is well below the PHENIX data.

Ma, Wang, and Chao (2010) $\left|y\right| < 2.4$

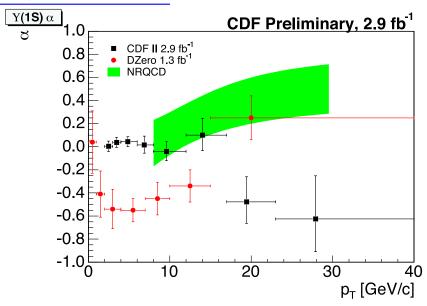


Butenschön and Kniehl (2010) 1.4 < |y| < 2.4

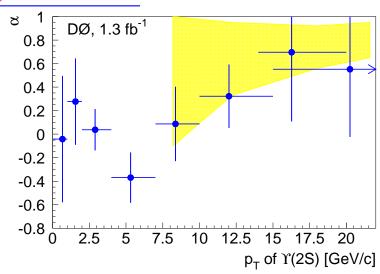

Polarization

- ullet LO NRQCD predictions for polarization predict large transverse polarization at large p_T .
- This prediction has not been borne out by the data.

Run I J/ψ polarization:



Run II J/ψ polarization:

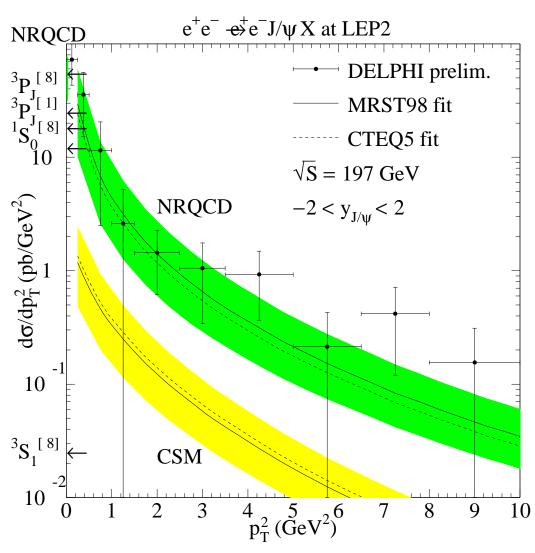


- $d\sigma/d(\cos\theta) \propto 1 + \alpha \cos^2\theta$.
 - $-\alpha = 1$ is completely transverse;
 - $-\alpha = -1$ is completely longitudinal.
- NRQCD prediction from Braaten, Kniehl, Lee (1999).
 - Feeddown from χ_c states is about 30% of the J/ψ sample and dilutes the polarization.
 - Feeddown from $\psi(2S)$ is about 10% of the J/ψ sample and is largely transversely polarized.
- Run I results are marginally compatible with the NRQCD prediction.
- Run II results are inconsistent with the NRQCD prediction.
- Also inconsistent with the Run I results.
 CDF was unable to track down the source of the Run I-Run II discrepancy.

$\Upsilon(1S)$ Polarization:

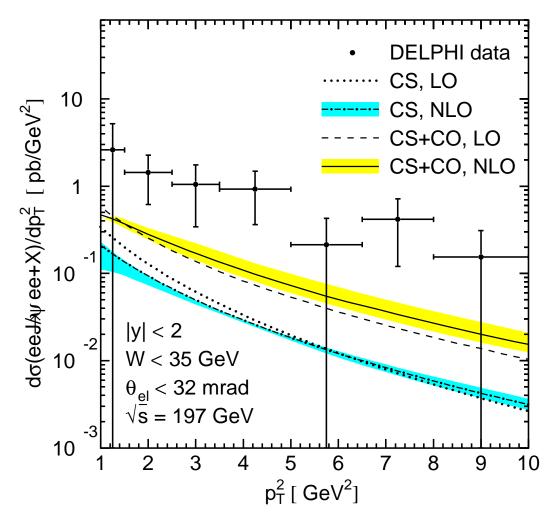
$\Upsilon(2S)$ Polarization:

- In the $\Upsilon(1S)$ case, the D0 results (red) are incompatible with the CDF results (black).
- Both the CDF and D0 results are incompatible with the LO NRQCD prediction of Braaten and Lee (2000) (green), but in different regions of p_T .
- In the $\Upsilon(2S)$ case, the theoretical and experimental error bars are too large to make a stringent test.


• The experimental results are in considerable disagreement.

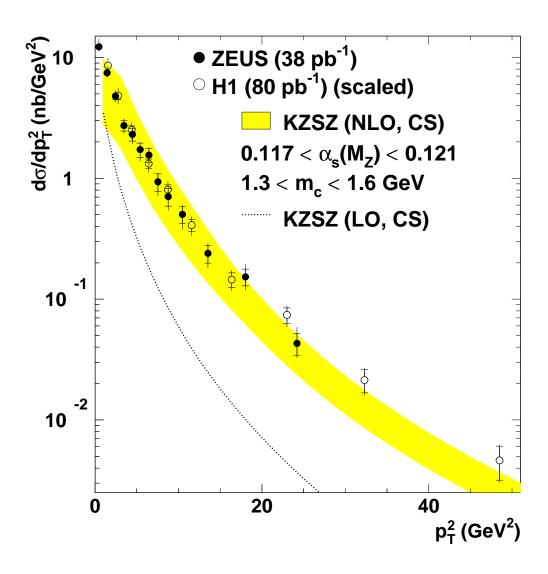
NLO Corrections to Polarization

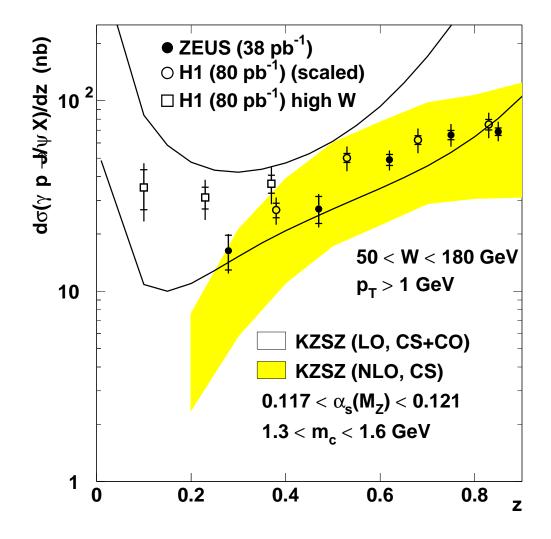
- NLO corrections to S-wave color-singlet polarization change the polarization from transverse to longitudinal.
- NLO corrections to S-wave color-octet polarization are small.
- Inclusion of (uncalculated) NLO corrections to *P*-wave color-octet processes may have a significant effect on the predictions.
 - Probably not enough to achieve agreement with the data.
 See the talk of Jianxiong Wang.


$\gamma\gamma \to J/\psi + X$ at LEP

• Klasen, Kniehl, Mihaila, Steinhauser (2001): LO NRQCD factorization calculation.

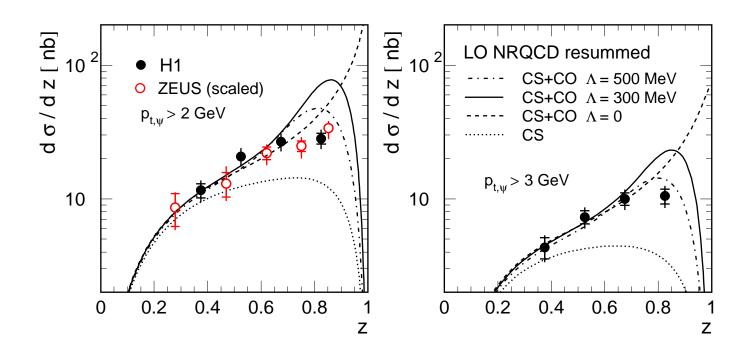
- Comparison with the Delphi (2001) data clearly favors NRQCD over the color-singlet model.
- Theory uses matrix elements fit from CDF data (Braaten-Kniehl-Lee (1999)) and MRST98LO (solid) and CTEQ5L (dashed) PDF's.
- Theoretical uncertainties from
 - Renormalization and factorization scales (varied by a factor 2),
 - NRQCD color-octet matrix elements,
 - Different linear combination of matrix elements than in Tevatron cross sections.


• Butenschön and Kniehl (2011): NLO NRQCD factorization calculation.

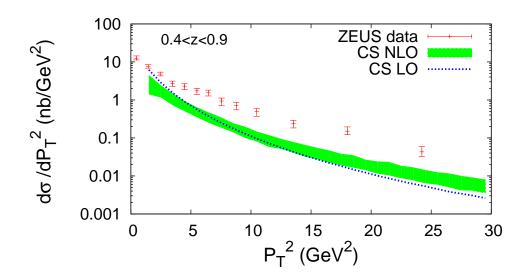

- Delphi (2001) data.
- NRQCD matrix elements determined from a global fit to KEKB, LEP II, RHIC, HERA, Tevatron, and LHC data.
- Uncertainties from factorization, renormalization, and NRQCD scales (varied by a factor 2).
- The NRQCD prediction has shifted down a bit, presumably because the NLO fit to the Tevatron data yields somewhat smaller coloroctet matrix elements.

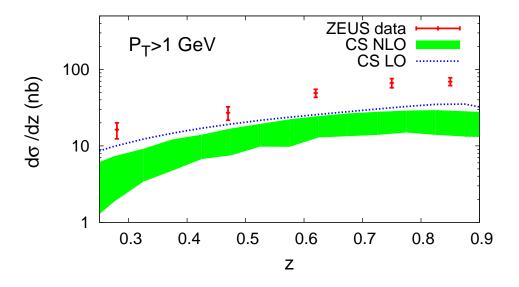
Inelastic J/ψ Photoproduction Cross Section at HERA

• It had been believed that NLO color-singlet calculations leave little room for a color-octet contribution.

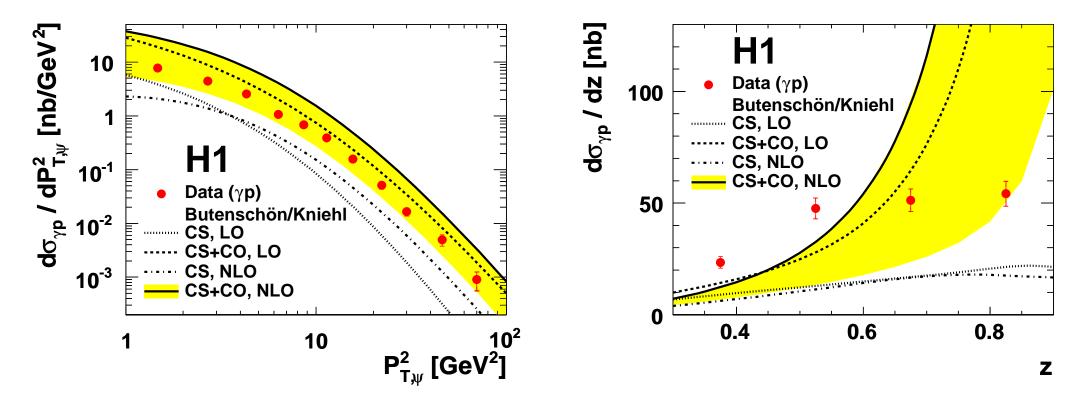

- NLO corrections increase the colorsinglet contribution substantially. (Krämer, Zunft, Steegborn, Zerwas (1994); Krämer (1995))
- NLO corrections include $\gamma + g \rightarrow (c\bar{c}) + gg$.
- At large p_T , this process goes as $\alpha_s^3 m_c^2/p_T^6$, instead of $\alpha_s^2 m_c^4/p_T^8$.
- Are NNLO corrections also important?

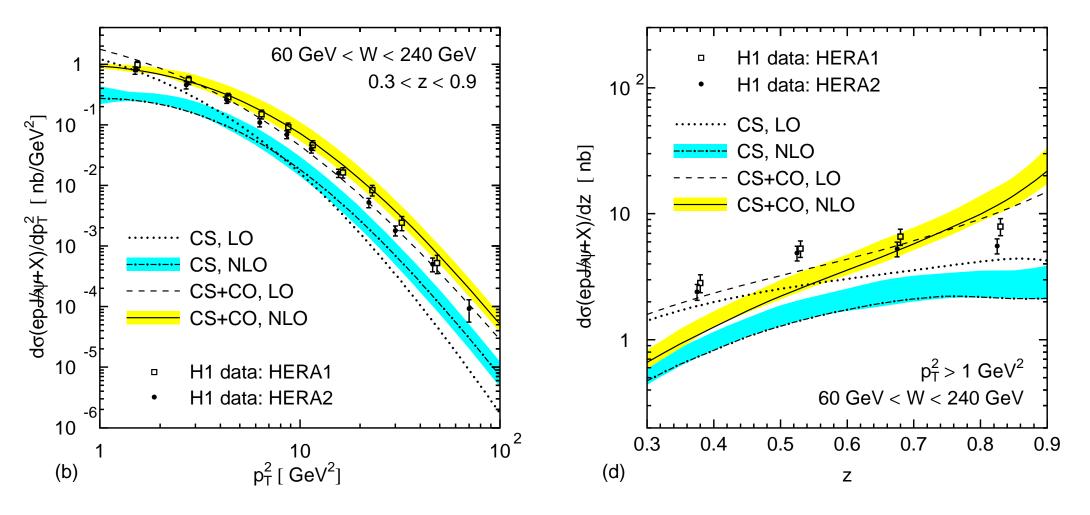
- LO color-singlet plus color-octet calculations by Cacciari, Krämer (1996); Amundson, Fleming, Maksymyk (1996); Ko, Lee, Song (1996); Kniehl, Krämer (1997).
- NLO color-singlet calculations by Krämer, Zunft, Steegborn, Zerwas (1994); Krämer (1995).


- The α_s expansion breaks down near z=1.
 - Resummation of multiple soft-gluon emission is needed.
 (Beneke, Schuler, Wolf (2000))

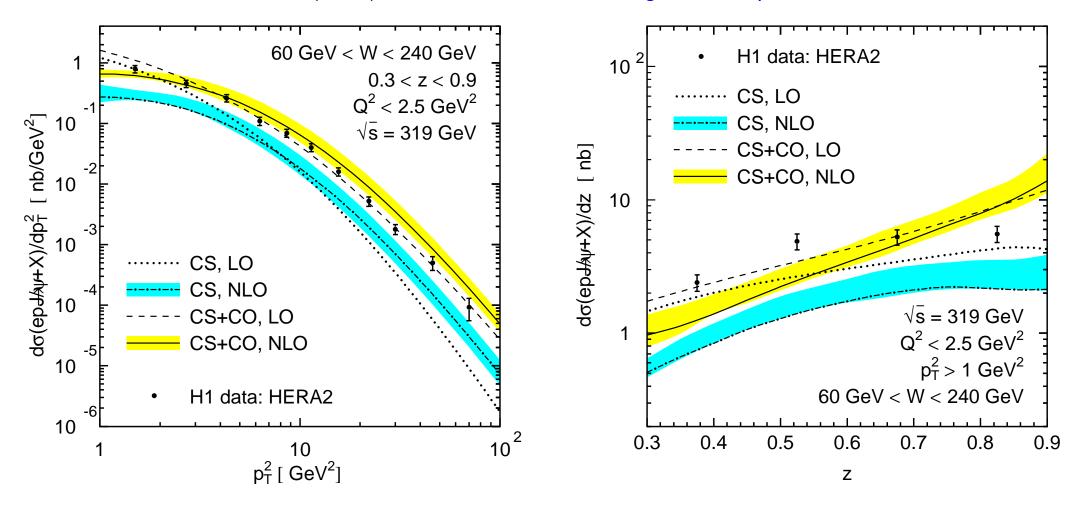

- The v expansion breaks down near z=1.
 - Resummation of the v expansion leads to a nonperturbative shape function. (Beneke, Rothstein, Wise (1997))
- Inclusion of a shape function with reasonable choices of parameters leads to an improved fit.

Recent Theoretical Developments


- Artoisenet, Campbell, Maltoni, Tramontano (2009): New calculation of NLO color-singlet contribution
 - Confirms the analytic results of previous calculations.
 - But a more reasonable choice of renormalization/factorization scale $(\sqrt{4m_c^2+p_T^2} \text{ instead of } m_c/\sqrt{2})$ yields much smaller numerical results for cross sections.


Leaves room for a color-octet contribution.

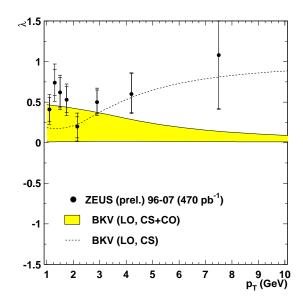
- Butenschön and Kniehl (2009): Complete NLO calculation of photoproduction in NRQCD factorization, including both color-octet and color-singlet contributions.
- The color-octet matrix elements are from the fit to the Tevatron data by Kniehl and Kramer (1998), which uses LO plus approximate NLO calculations.

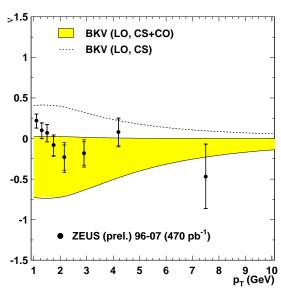


- The comparison of the H1 (2009) data with the Butenschön and Kniehl calculation strongly favors NRQCD factorization over the color-singlet model.
- The discrepancy at low z is due to the omission of resolved contributions.
- The discrepancy at high z would probably be fixed by resummation.

• NRQCD matrix elements from the simultaneous NLO fit to the CDF (2005) and H1 (2009) data yield slightly higher central values and smaller uncertainties.

• Butenschön and Kniehl (2011): NLO calculation, including resolved-photon contributions.

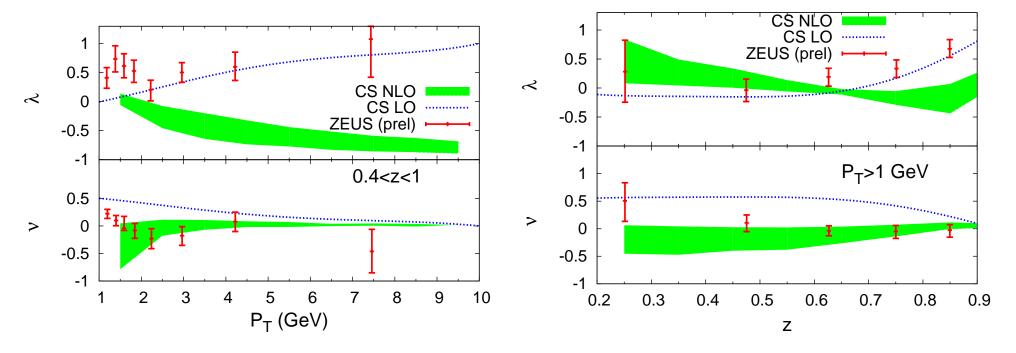



- NRQCD matrix elements from a global fit to KEKB, LEP II, RHIC, HERA, Tevatron, LHC data.
- Uncertainties from factorization, renormalization, and NRQCD scales (varied by a factor 2).
- ullet Inclusion of resolved-photon contributions improves the agreement at small z.
- ullet A more negative value of the 3P_0 color-octet matrix element reduces the rise in cross section near z=1.

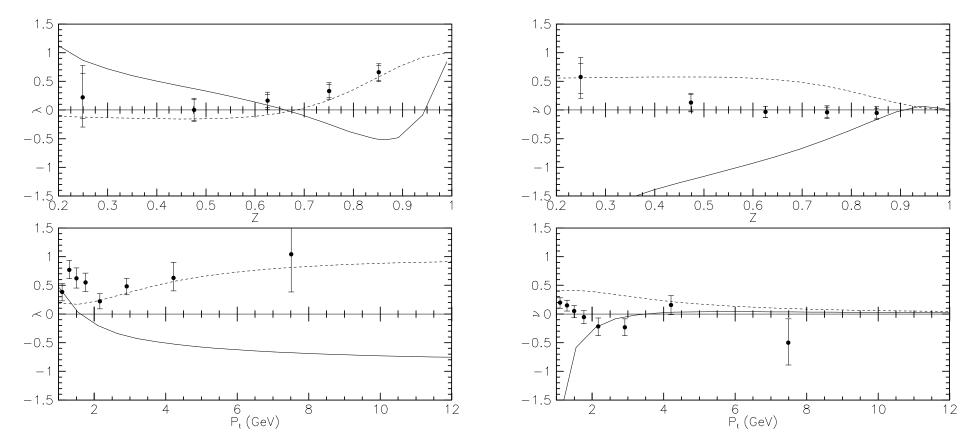
Polarization in Inelastic J/ψ Photoproduction at HERA

$$\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin(2\theta) \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos(2\phi)$$

- θ and ϕ are the polar and azimuthal angles of the l^+ 3-momentum with respect to the helicity frame.
- The helicity frame is defined in the J/ψ rest frame.
- The z axis is the direction of boost from the lab frame to the J/ψ rest frame.
- \bullet ϕ is defined with respect to the scattering plane.



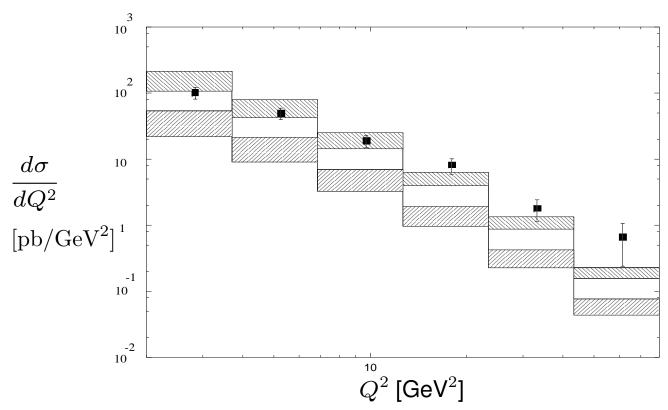
- LO color-singlet plus color-octet calculation by Beneke, Krämer, Vanttinen (1997) using Beneke-Krämer (1996) matrix elements from fits to the Tevatron data.
- ullet The data for λ at high p_T slightly favor the colorsinglet prediction.
- ullet The data for u at high p_T slightly favor the colorsinglet+color-octet prediction.


NLO Calculations

- NLO calculations have a significant effect on the color-singlet polarization predictions.
 - LO calculation: Beneke, Krämer, Vanttinen (1997).
 - NLO calculations: Artoisenet, Campbell, Maltoni, Tramontano (2009); Chang, Li, Wang (2009).

Artoisenet, Campbell, Maltoni, Tramontano:

Chang, Li, Wang:

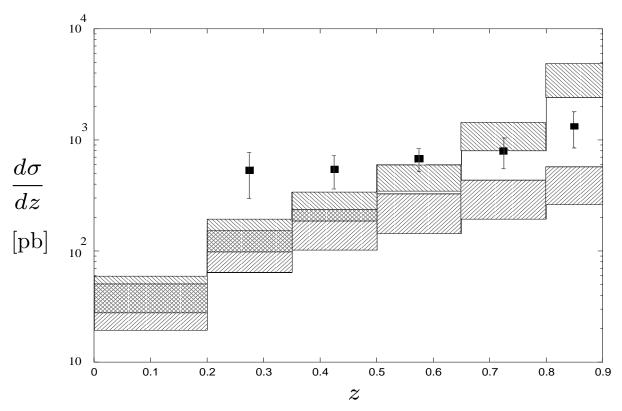

Dotted lines are LO. Solid lines are NLO.

- The NLO calculations agree, except that Chang, Li, and Wang find a more negative result for ν vs. z than Artoisenet, Campbell, Maltoni, Tramontano.
- The NLO color-singlet contribution alone cannot explain the data for λ at large p_T or large z.
- Would a color-octet contribution bring theory into agreement with data?

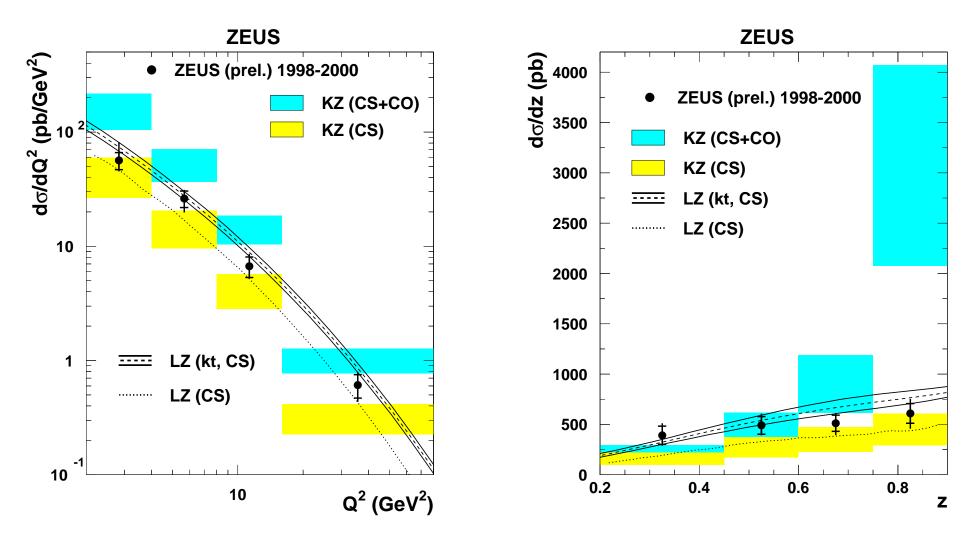
J/ψ Production in DIS at HERA

- Note that NLO calculations are not yet available for this process.
- The NRQCD prediction (Kniehl, Zwirner (2001)) uses matrix elements extracted from the Tevatron data (Braaten-Kniehl-Lee (1999)).

• The H1 (1998) data plotted as a function of Q^2 favor the NRQCD prediction over the color-singlet-model prediction. (Q is the virtual-photon momentum.)


H1 data vs. leading-order NRQCD (upper) and Color-Singlet Model (lower).

• The H1 (1998) data plotted as a function of P_T^2 favor the NRQCD prediction over the color-singlet-model prediction. p_T is the transverse momentum of the J/ψ .


H1 data vs. leading-order NRQCD (upper) and Color-Singlet Model (lower).

- The H1 (1998) data plotted as a function of z do not agree well with either the NRQCD prediction or the color-singlet-model prediction. (z is the energy fraction of the J/ψ .)
- The data do not show the expected color-octet rise at z=1. Resummations of the α_s and v expansions are needed.

H1 data vs. leading-order NRQCD (upper) and Color-Singlet Model (lower).

- The ZEUS data are systematically lower than the H1 (1998) data and agree less well with the NRQCD prediction (but have larger error bars).
- The data plotted as a function of z do not show the expected color-octet rise at z=1.

 k_T -factorization curves from A.V. Lipatov and N.P. Zotov (2003).

Factorization in Exclusive Quarkonium Production

- GTB, Garcia i Tormo, Lee (2008): Proof of factorization for the simpler case of exclusive quarkonium production.
 - Avoids the difficulties of additional gluons or heavy quarks in the phase space near the quarkonium.
 - Factorization holds in B-meson decays to a quarkonium plus a light meson up to corrections of order $m_c v/m_b$.
 - Factorization holds in e^+e^- annihilation to two charmonia up to corrections of order $m_c^2v^2/s$.
 - The essential idea: In the production CM frame, the four-momenta of the quarkonium constituents are approximately proportional (corrections of order $m_c v/\sqrt{s}$).
 - Soft gluons decouple from a color-singlet object whose constituents have four-momenta that are proportional.
- These proofs are valid only for processes in which there is no helicity flip.
 - For helicity-flip processes, such as $e^+e^- \to J/\psi + \eta_c$, NRQCD factorization is still believed to hold.
 - But the short-distance coefficient contains two scales: Q and m.

Exclusive Double-Charmonium Production at Belle and BaBar

Comparison of LO Calculations with Experiment

Experiment

Belle (2004): $\sigma[e^+e^- \to J/\psi + \eta_c] \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \text{ fb.}$ BaBar (2005): $\sigma[e^+e^- \to J/\psi + \eta_c] \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1} \text{ fb.}$

ullet NRQCD at LO in $lpha_s$ and v

Liu, He, Chao (2002): $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 5.5$ fb.

Braaten, Lee (2003): $\sigma[e^+e^- \to J/\psi + \eta_c] = 3.78 \pm 1.26$ fb.

Hagiwara, Kou, Qiao (2003): $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 2.3$ fb.

The three calculations employ different choices of m_c , NRQCD matrix elements, and α_s .

Braaten and Lee include QED effects.

Confirmed by Brodsky, Ji, and Lee in light-front QCD for zero relative motion between the heavy Q and \bar{Q} .

- Exclusive process: no color-octet contributions.
- The color-singlet matrix elements at LO in v are determined from $\eta_c \to \gamma \gamma$ and $J/\psi \to e^+e^-$.

ullet There are also disagreements between LO NRQCD predictions and experiment for $J/\psi + \chi_{c0}$ and $J/\psi + \eta_c(2S)$:

	$J/\psi + \eta_c$	$J/\psi + \chi_{c0}$	$J/\psi + \eta_c(2S)$
$\sigma imes B_{>2}$ (fb) [Belle (2004)]	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
$\sigma imes B_{>2}$ (fb) [BaBar (2005)]	$17.6 \pm 2.8^{+1.5}_{-2.1}$	$10.3 \pm 2.5^{+1.4}_{-1.8}$	$16.4 \pm 3.7^{+2.4}_{-3.0}$
σ (fb) [Liu, He, Chao (2002)]	5.5	6.9	3.7
σ (fb) [Braaten, Lee (2003)]	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52
σ (fb) [Hagiwara, Kou, Qiao (2003)]	2.3		

Corrections of NLO in α_s to $e^+e^- \rightarrow J/\psi + \eta_c$

- An important step in resolving the discrepancy: Zhang, Gao, Chao (2005) found that corrections at NLO in α_s yield a K factor of about 1.96.
- Confirmed by Gong and Wang (2007).
- Not enough by itself to bring theory into agreement with experiment.
- Zhang, Ma, Chao (2008): In the cases of $\sigma[e^+e^- \to J/\psi(\psi(2S)) + \chi_{c0}]$, large K factors (~ 2.8) may bring theory into agreement with experiment.

Relativistic Corrections to $e^+e^- \rightarrow J/\psi + \eta_c$

- Relativistic corrections $\sigma[e^+e^- \to J/\psi + \eta_c]$ can come from two sources:
 - Direct corrections to the process $e^+e^- o J/\psi + \eta_c$ itself,
 - Indirect corrections that enter through the matrix element of leading order in v. Appear when $\Gamma[J/\psi \to e^+e^-]$ is used to determine the matrix element because of relativistic corrections to the theoretical expression for $\Gamma[J/\psi \to e^+e^-]$.
- ullet Relativistic corrections depend on matrix elements of higher order in v.
- GTB, Kang, Lee (2006): Determine matrix elements of higher order in v by making use of a potential model.
 - Not really a model because the use of potentials follows from a rigorous expansion in powers of v (pNRQCD).
 - The static $Q\bar{Q}$ potential is known from lattice simulations.
 - First determination of these matrix elements with small enough uncertainties to be useful.
- GTB, Chung, Kang, Kim, Lee, Yu (2006): Corrections at NLO in α_s plus relativistic corrections may bring theory into agreement with experiment.
- Confirmed by He, Fan, Chao (2007).
- ullet GTB, Chung, Kang, Lee (2007): New determination of the matrix elements of LO and NLO in v with a detailed error analysis.

- New Calculation of $\sigma[e^+e^- \to J/\psi + \eta_c]$ (GTB, Chung, Kang, Lee, Yu (2007))
 - Makes use of the improved matrix elements from GTB, Chung, Kang, Lee (2007).
 - Resums relativistic corrections that arise from the potential-model quarkonium $Q\bar{Q}$ wave function.
 - * Uses the surprising relation $\langle v^{2n} \rangle = \langle v^2 \rangle^n$.
 - Uses the results of Zhang, Gao, and Chao (2005) for the corrections of NLO in α_s .
 - Includes the interference between the relativistic corrections and the corrections of NLO in α_s .
 - Includes a detailed error analysis

$$\sigma_{\text{tot}} = 17.6^{+0.8+5.3+0.7+3.9+0.7+2.8+1.6+1.4+1.9+1.32+1.89}_{-0.9-3.7-0.7-3.0-0.7-2.9-1.5-1.1-2.0-1.32-1.89} \text{ fb} = 17.6^{+8.1}_{-6.7} \text{ fb}$$

The corrections to the NRQCD factorization formula are nominally quite small:

$$\sim (m_c v^2)^2/(s/4) \approx 7\%$$
.

- \bullet σ_{tot} consists of
 - 5.4 fb Leading order in α_s and v (including indir. rel. corr., but without QED contribution)
 - 1.0 fb QED contribution
 - 2.9 fb Direct relativistic corrections
 - 6.9 fb Corrections of NLO in α_s
 - 1.4 fb Interference between rel. corr. and corr. of NLO in α_s
 - 17.6 fb Total
- ullet The individual relativistic corrections are all of order $v^2 \approx 0.3$, but they all go in the same direction.
 - Indirect relativistic corrections are about 37% per quarkonium.
 - Direct relativistic corrections are about 40%.
 - The corrections of higher order in v from the resummation are about 13%.
 - The v expansion seems to be under control.
- Result for $\sigma[e^+e^- \to J/\psi + \eta_c]$ confirmed, within uncertainties, by He, Fan, Chao (2007), using a fit to decay data to determine the LO and NLO NRQCD matrix elements.

• Theory and experiment agree within uncertainties:

- Theory:
$$\sigma[e^+e^- \to J/\psi + \eta_c] = 17.6^{+8.1}_{-6.7} \, \mathrm{fb}$$

- Belle:
$$\sigma[e^+e^- \to J/\psi + \eta_c] \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \text{ fb.}$$

- BaBar:
$$\sigma[e^+e^- \to J/\psi + \eta_c] \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1}$$
 fb.

- Caveat: $B_{>2}$ is not known.
 - Could be as small as 0.5-0.6.
 - Even so, the error bars of theory and the BaBar experiment overlap.

Light-Cone Calculations

Bondar and Chernyak (2005)
Braguta, Likhoded, Luchinsky (2006)
Braguta (2007)

- In principle, calculations in the light-cone formalism are a rigorous approach to exclusive double-charmonium production in e^+e^- annihilation.
- LO light-cone calculations automatically sum a class of relativistic corrections and include some corrections that would be NLO in α_s in the NRQCD approach.
- Agreement with experimental results has been achieved using the light-cone approach.
- Results depend strongly on modeling of the charmonium light-cone distributions.
 - Low moments of the light-cone distributions can be constrained by sum rules [Braguta (2007)].
- Modeling is not necessary.
 - Relativistic corrections can be resummed without modeling in the NRQCD by making use of potentials from lattice simulations.
 - Contributions from high-momentum tails of the light-cone distributions need not be modeled because they are calculable in perturbation theory in NRQCD [GTB, Kang, Lee (2006)].

Inclusive Double $c\bar{c}$ Production at Belle

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/\sigma(e^+e^- \to J/\psi + X)$$

• Belle (2002):

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/\sigma(e^+e^- \to J/\psi + X) = 0.59^{+0.15}_{-0.13} \pm 0.12.$$

LO color-singlet model

(Cho, Leibovich (1996); Baek, Ko, Lee, Song (1997); Yuan, Qiao, Chao (1997)):

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/\sigma(e^+e^- \to J/\psi + X) \approx 0.1.$$

• There is a significant disagreement between experiment and the LO color-singlet model.

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)$$

- Experiment and LO theory disagree.
 - Belle (2009): $\sigma(e^+e^- \to J/\psi + c\bar{c} + X) = 0.74 \pm 0.08^{+0.09}_{-0.08}$ pb.
 - LO Theory (color-singlet): $\sigma(e^+e^- \to J/\psi + c\bar{c} + X) = 0.10$ –0.27 pb. Large renormalization-scale dependence.
- Liu, He, Chao (2003): Two-photon contributions are only about 23 fb.
- Color-octet contributions to $\sigma(e^+e^- \to J/\psi + c\bar{c} + X)$ (Liu, He, Chao (2004)):
 - About 11 fb total.
 - From $\sigma(e^+e^- \to J/\psi + c\bar{c})$ (7%) and $\sigma(e^+e^- \to \chi_{c1} + c\bar{c})$ (32%).
- He, Fan, Chao (2007): Direct relativistic corrections to $\sigma(e^+e^- \to J/\psi + c\bar{c} + X)$ are only about 31%.

- NLO calculation of the color-singlet contribution to $\sigma(e^+e^- \to J/\psi + c\bar{c} + X)$ (Zhang and Chao (2007)):
 - Find a K factor of about 1.8.
 - Taking into account QED corrections, two-photon processes, feeddown from $\psi(2S)$ (the largest effect) and χ_{cJ} , and LO color-octet corrections, they obtain

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X) = 0.53^{+0.59}_{-0.23} \,\text{pb} \qquad (\mu = \sqrt{s}/2).$$

The uncertainties come from m_c .

- Calculation confirmed by Gong and Wang (2009).
- Resolves the discrepancy between theory and experiment, but theoretical uncertainties are large.
- Nayak, Qiu, and Sterman (2007, 2008): there could be a nonperturbative enhancement to production of $J/\psi + c\bar{c}$ when the c or the \bar{c} is co-moving with the J/ψ .
 - This effect can't be calculated reliably in perturbation theory.
 - Its size must be determined experimentally.

$$\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c})$$

- Experiment and the LO color-singlet contribution are in rough agreement.
 - Belle (2009):

$$\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c})) = 0.43 \pm 0.09 \pm 0.09 \text{ pb.}$$

– LO color-singlet contribution (Ma, Zhang, Chao (2008); Wang (2003)): $\sigma(e^+e^- \to J/\psi + gg) = 0.36 \text{ pb } (\mu = \sqrt{s}/2)$

LO color-octet contribution

(Braaten and Chen (1996); Cho and Leibovich (1996); Yuan, Qiao, and Chao (1997); Chao and Hao (2003); Baek, Ko, Lee, and Song (1998); Wang (2003)):

$$\sigma(e^+e^- \to J/\psi + g) = 0.28 \text{ pb.}$$

Based on LO Tevatron extractions of the 1S_0 and 3P_J color-octet NRQCD matrix elements.

NLO color-singlet contribution

(Ma, Zhang, and Chao (2008); Gong and Wang (2009)):

$$\sigma(e^+e^- \to J/\psi + gg) = 0.53^{+0.12}_{-0.09} \, \mathrm{pb} \, (\mu = \sqrt{s}/2).$$

- Includes the effects of feeddown from the $\psi(2S)$: 0.14 pb.
- The uncertainty is from m_c only. Probably an underestimate.
- Relativistic corrections to the color-singlet contribution to $\sigma(e^+e^- \to J/\psi + gg)$ (He, Fan, Chao (2009)): 0.15 ± 0.05 pb.

Computed using matrix elements from Bodwin, Chung, Kang, Lee and Yu (2008).

NLO color-octet contribution (Zhang, Ma, Wang, and Chao (2009):

$$\sigma(e^+e^- \to J/\psi + X(\mathsf{non-}c\bar{c})) \approx 1.5 \text{ pb.}$$

- Uses Krämer (2001) matrix elements from LO fits to Tevatron data.
- Apparent discrepancy with data, but use of Butenschön and Kniehl (2011) NLO matrix elements and use of the scale $\mu = \sqrt{s}/2$ instead of $\mu = m_c$ gives

$$\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c})) = 0.33 \pm 0.10 \text{ pb.}$$

Color-singlet plus color-octet contributions to $\sigma(e^+e^- \to J/\psi + X \text{(non-}c\bar{c})$

ullet Sum of known contributions, including the color-singlet-process feeddown from the $\psi(2S)$ and relativistic correction:

$$\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c})) = 1.01^{+0.16}_{-0.14} \text{ pb.}$$

- About a 2σ discrepancy with the Belle (2009) result.
- Theoretical uncertainties are probably underestimated.

New calculation of the sum of color-singlet and color-octet contributions (Butenschön and Kniehl (2011)):

$$\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c})) = 0.70^{+0.35}_{-0.17} \text{ pb}.$$

- NRQCD matrix elements determined in a global fit to KEKB, LEP II, RHIC, HERA, Tevatron, and LHC data.
- This calculation and the Belle (2009) data agree within error bars.
- However, the calculation does not include the color-singlet-process feeddown from the $\psi(2S)$ and relativistic corrections.

They would increase this result by about 0.29 pb, leading to a 2σ discrepancy with the Belle (2009) result.

Comments

Note that BaBar (2001) obtained

$$\sigma(e^+e^- \to J/\psi + X) = 2.52 \pm 0.21 \pm 0.21 \text{ pb},$$

in contrast with the value that can be inferred from the latest Belle (2009) measurements

$$\sigma(e^+e^- \to J/\psi + X) = \sigma(e^+e^- \to J/\psi + c\bar{c} + X) + \sigma(e^+e^- \to J/\psi + X(\mathsf{non-}c\bar{c})) = 1.17 \pm 0.12^{+0.13}_{-0.12} + 1.17 \pm 0.12^{+0.13}_{-0.12} + 1.17 \pm 0.12^{+0.13}_{-0.13} + 1.17 \pm$$

• It is important for BaBar to check the Belle results for $\sigma(e^+e^- \to J/\psi + c\bar{c})$ and $\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c}))$.

Effect of NLO calculations on the ratio

The NLO calculations agree with the Belle (2002) result, within error bars:

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/\sigma(e^+e^- \to J/\psi + X) \approx 0.35^{+0.23}_{-0.17}$$
.

This computation uses

$$\sigma(e^+e^- o J/\psi + c\bar{c} + X)$$
: Ma, Zhang, and Chao (2008) result $\sigma(e^+e^- o J/\psi + X(\text{non-}c\bar{c}))$: Butenschön and Kniehl (2011) result plus color-singlet-process feeddown from $\psi(2S)$ and relativistic corrections.

- It would be good to have a detailed error analysis for the theoretical prediction.

Summary

- The NRQCD factorization approach provides a systematic method for calculating quarkonium production (and decay) rates as double expansions in powers of α_s and v.
- NRQCD factorization for inclusive production rates has not yet been established.
- There is now a proof of NRQCD factorization for exclusive charmonium production in B-meson decays and e^+e^- annihilation.
- NRQCD factorization has enjoyed a number of successes:
 - quarkonium production at the Tevatron,
 - J/ψ production at RHIC,
 - J/ψ production at the LHC,
 - $-\gamma\gamma \rightarrow J/\psi + X$ at LEP,
 - inelastic J/ψ photoproduction at HERA,
 - J/ψ production in DIS at HERA,
 - exclusive double-charmonium production at Belle and BaBar.

- Theory and experiment are no longer in obvious conflict for $\sigma(e^+e^- \to J/\psi + c\bar{c} + X)$. Theoretical uncertainties are large.
- Theory and experiment for $\sigma(e^+e^- \to J/\psi + X(\text{non-}c\bar{c}))$ disagree at the 2σ level.
- The situation is still ambiguous for polarization in inelastic J/ψ photoproduction at HERA.
- The disagreement between theory and experiment for quarkonium polarization at the Tevatron presents a serious challenge.
- In a number of cases, corrections of higher order in α_s and v and resummations near kinematic endpoints have proven to be essential to obtain reliable theoretical predictions.
- In many cases, the perturbation expansion converges poorly, and theoretical uncertainties are large.
- The fragmentation approach of Kang, Qiu, and Sterman may help to bring theoretical uncertainties under control.
- Measurements of direct-production cross sections and polarizations would be of great help in understanding production mechanisms.
- We need to make additional measurements beyond $d\sigma/dp_T$ at hadron-hadron colliders in order to pin down the quarkonium production mechanisms.